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A surprise and mild method to prepare fluorine-containing indole derivatives through a one-pot three-
component condensation reaction sequence is presented. To our surprise, during the reaction of preparation
of fluorine-containing indole derivatives, unexpected formation of fluorine-containing tetrahydrocarbazole
was found. Moreover, this method has been demonstrated in the preparation of functionalized polycyclic
indole derivatives in a straightforward and atom-economical manner.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Indoles represent a prominent class of heterocyclic compounds
with varied and often potent biological activities.1 Consequently,
there are a large number of methodologies for the synthesis and
structural modification of indole scaffold, including acid-induced
Fischer indole synthesis from arylhydrazine and ketones,2 transi-
tion metal-catalyzed intramolecular alkylation of alkenyl indoles
with unactivated olefins,3 and Lewis acid-promoted internal olefins
in FriedeleCrafts alkylation of indoles.4 Nevertheless, many of them
suffered from some of the following disadvantages, such as diffi-
culty in preparation of complex starting materials, harsh reaction
conditions, trouble with operation (excluding air and moisture),
expensive reagents (e.g., metal-complex catalysis) and long re-
action times, multistep operation, and low overall yields. Thus, in
spite of the diverse synthetic routes developed so far, there still
remains a need to develop a more concise, benign one-pot option
for the synthesis of indole derivatives, especially the fluorinated
ones. It is well documented that the introduction of fluorine-
containing group into organic molecules can make a profound
and unexpected influence on the physical and biological properties
of organic compounds.5 However, to the best of our knowledge,
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there are few reports about the synthesis of fluorine-containing
indole derivatives. Herein, we wish to report a new and efficient
method for the synthesis of fluorine-containing indole derivative
through a one-pot three-component condensation reaction se-
quence, which involves a Knoevenagel condensation of para-
formaldehyde and fluorine-containing b-ketoesters, followed by
trapping with indoles via a Michael-type reaction. Depending on
different indoles and fluorine-containing b-ketoesters, different
products can be formed through carbonecarbon double-bond
isomerization, b-H elimination, or cyclization.

b-Keto polyfluoroalkanesulfones have a moderately active
methylene moiety and have been widely used in the synthesis of
heterocycles and unsaturated sulfonyl esters. The Knoevenagel
condensation reaction between b-keto aryl sulfones or a-per-
fluoroalkanesulfonyl acetate esters and aldehydes is well-known.6

Our laboratory has also studied some chemical transformations of
these compounds.7 For instance, in 2004, we reported an un-
expected formation of tetrasubstituted trans-2,3-dihydrofurans
under basic conditions when b-keto polyfluoroalkanesulfones are
reacted with aromatic aldehydes (Scheme 1).7a
Scheme 1. The formation of tetrasubstituted trans-2,3-dihydrofurans.
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Recently, we studied a one-pot three-component condensation
reaction under acidic conditions. As an example, reaction of 1,2-
dimethyl-1H-indole, 2-(trifluoromethane sulfonyl)-1-
phenylethanone, and paraformaldehyde in the presence of ace-
tic acid in DCM at room temperature for 1 h led to isolation of 4
in 56% yield (Scheme 2).
Scheme 2. The reaction of 1,2-dimethyl-1H-indole, 2-(trifluoromethane sulfonyl)-1-phenylethanone and paraformaldehyde.

Scheme 3. The formation of tetrahydrocarbazole derivative.

Fig. 1. Molecular structure of 5c.
In order to examine the generality of this reaction, 2-(tri-
fluoromethanesulfonyl)-1-phenylethanone 2a was replaced by
ethyl 4,4,4-trifluoro-3-oxobutanoate 2b to react with 1,2-dimethyl-
1H-indole and paraformaldehyde under the same reaction condi-
tions. To our surprise, the structure of the product was not con-
sistent with what we expected. From the 1H NMR spectrum, the
single signal at 2.55 ppm of 2-methyl group of indole molecular
disappeared and a diagnostic single signal at �80.1 ppmwas found
for the 19F NMR spectrum, which suggested that the tri-
fluoromethyl group was quite close to an electron-donating group.
Next, ethyl 4-bromo-4,4-difluoro-3-oxybutaneoate 2c was used to
repeat the reaction under the same conditions. The structure of the
isolated product was determined to be a fused polycyclic indole
derivative, 2-bromodifluromethy substituted tetrahydrocarbazole,
by X-ray crystallography (Scheme 3, Fig. 1).

A possible mechanism is outlined in Scheme 4. Under acidic
condition, ethyl 4,4,4-trifluoromethyl-3-oxobutanoate first reacts
with paraformaldehyde through a Knoevenagel condensation, fol-
lowed by an in situ trapping of the vinyl product (I) with 1,2-
dimethyl-1H-indole via a Michael-type reaction. The addition
product (II) is unstable, which undergoes double-bond isomeriza-
tion, b-H elimination, cyclization to form tetrahydrocarbazole as
the final product. To the best of our knowledge,2a,8 this might
represent the first report on the formation of tetrahydrocarbazole
derivatives via a one-pot three-component reaction sequence.

As can been seen in Table 1, the reaction did not proceedwithout
acid (Table 1, entry 4). Moreover, use of Lewis acids instead of
Br€onsted acids resulted in the formation of different products
(Table 2).9,10

As mentioned above (Scheme 4), product 5 was formed due to
the presence of 2-methyl group on the indole motif. So we
employed 1b to react with ethyl 4,4,4-trifluoroacetoacetate 2b and
paraformaldehyde 3. However, under the same condition, an un-
expected six-membered ring product 8 formed instead of the
expected product 9 (Scheme 5). The structure of 8 was fully con-
firmed by spectroscopic method and single-crystal X-ray diffraction
analysis. Its molecular structure was showed in Fig. 2.

A possible mechanism for the formation of compound 8 is
proposed in Scheme 6. In the presence of acetic acid, the unstable
Michael-type addition indole intermediate (III) further reacted
with two formaldehyde molecules, followed by cyclization to give
the 1,3-dioxane product.

In summary, we have developed a novel and mild method to
prepare fluorine-containing indole derivatives through a one-pot
three-component condensation reaction sequence. Moreover, this
method has been demonstrated in the preparation of functional-
ized polycyclic indole derivatives in a straightforward and atom-
economical manner. Further studies to expand the scope of this
new methodology are underway in our laboratory.
2. Experimental procedure and spectral data

2.1. General

To a solution of paraformaldehyde (2.5 mmol), fluorine-
containing b-ketoesters (0.5 mmol), and indole (0.5 mmol) in DCM
(3.0 mL) were added acetic acid (50 mol %) and molecular sieves 4�A
(100 mg). The reaction mixture was stirred by magnetic stirrer at



Scheme 4. The possible mechanism of formation of tetrahydrocarbazole derivative.

Table 1
Reaction results of 1a, 2bed, and 3

N
CH3

COR2
R1
OH

+

1a

N
CH3

CH3

+
AcOH, CH2Cl2, R.T.

2(b-d)

(HCHO)n
4 Å molecular sieves

3

R1 R2

O O

5(b-d)

Entry 2 Acid Product Yielda (%)

R1 R2

1 CF3 OEt (2b) AcOH 5b 50
2 CF2Br OEt (2c) AcOH 5c 63
3 C3F7 tBu (2d) AcOH 5d 47
4 CF3 OEt (2b) d d d

a Isolate yield based on 2.
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room temperature for about 2 h. The progress of reactionwas moni-
toredby TLC.After satisfactoryconversion, theproductwas separated
from molecular sieves by filtration. The solvent was removed in
vacuum and the residue was purified on silica gel using ethyl aceta-
teehexane as eluent to afford the pure corresponding products.

2.1.1. 3-(1,2-Dimethyl-1H-indol-3-yl)-1-phenyl-2-(trifluoromethyl-
sulfonyl)propan-1-one (4).

N

SO2CF3

COPh

Colorless solid. Mp 105e107 �C. IR (KBr) n 3435, 3046, 2941,
1684, 1594, 1580, 1476, 1448, 1411, 1363, 1338, 1259, 1237, 1207,
1153, 1109, 934, 773, 741 cm�1. 1H NMR (300 MHz, CDCl3)
d 7.53e7.40 (m, 4H), 7.24e7.11 (m, 5H), 5.57 (dd, J1¼3.6 Hz,
J2¼11.1 Hz, 1H), 3.91 (dd, J1¼11.1 Hz, J2¼14.1 Hz, 1H), 3.72 (dd,
J1¼3.6 Hz, J2¼14.1 Hz, 1H), 3.43 (s, 3H, CH3), 2.19 (s, 3H, CH3) ppm.
19F NMR (282 MHz, CDCl3) d �74.7 (s, 3F) ppm. 13C NMR (100 MHz,
CDCl3) d 190.0, 136.9, 136.2, 135.0, 134.4, 128.6, 128.3, 126.5, 121.4,
119.9 (q, 1JCF¼329.7 Hz), 119.9, 116.7, 109.1, 102.9, 64.7, 29.5, 23.8,
10.0 ppm. MS (EI) m/z (%): 409 (Mþ, 20), 276 (72), 170 (18), 158
(C11H12Nþ, 100), 105 (93), 77 (36). Anal. Calcd for C20H18F3NO3S: C,
58.67, H, 4.43, N, 3.42. Found: C, 58.73, H, 4.58, N, 3.30.

2.1.2. (2S,3R)-Ethyl 2-hydroxy-9-methyl-2-(trifluoromethyl)-2,3,4,9-
tetrahydro-1H-carbazole-3-carboxylate (5b).

N

CO2Et

CF3
OH

Colorless solid. Mp 136e138 �C. IR (KBr) n 3465, 2975,1747,1709,
1616,1474,1395,1383,1375,1345,1295,1277,1189,1163,1106,1062,
1022, 859, 743 cm�1. 1H NMR (300 MHz, CDCl3) d 7.43 (d, J¼7.8 Hz,
1H), 7.25 (d, J¼7.8 Hz, 1H), 7.18 (t, J¼7.2 Hz, 1H), 7.09 (t, J¼6.9 Hz,
1H), 4.71 (s, 1H), 4.38e4.20 (m, 2H, CH2), 3.59 (s, 3H, CH3),



Scheme 5. The formation of unexpected six-membered ring product 8.

Table 2
Reaction results of 1a, 2b, and 3 in the presence of different Lewis acids

N
CH3

CH3 F3C OEt

O O

(HCHO)n
Lewis acid, CH2Cl2, R.T.

1a 2b

N
CH3

CH3

NH3C

H3C

6

N
CH3

CH3

CO2Et
F3C

OH

3

4 Å molecular sieves

7

Entry Acid Product Yielda (%)

1 BF3$OEt2 6 20
2 FeCl3 6 24
3 AlCl3 6 34
4 Cu(OTf)2 6 42
5 Yb4(OTf)3 6 32
6 ZnCl2 7 35/59b

7 Sm(OTf)3 7 41

a Isolate yield based on 2.
b Reaction without 3 and molecular sieves.

Fig. 2. Molecular structure of 8.
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3.19e2.97 (m, 5H), 1.34 (t, J¼7.2 Hz, 3H, CH3) ppm. 19F NMR
(282 MHz, CDCl3) d �81.1 (s, 3F) ppm. 13C NMR (100 MHz, CDCl3)
d 175.4, 137.5, 130.0, 125.9 (q, 1JCF¼286.4 Hz), 125.9, 121.4, 119.3,
117.9, 108.9, 105.0, 74.4 (q, 2JCF¼27.0 Hz), 62.0, 42.3, 29.3, 28.7, 22.9,
14.0 ppm. MS (EI) m/z (%): 341(Mþ, 32), 323 (15), 296 (3), 272 (1),
268 (10), 250 (Mþ�Me�Ph, 100), 230 (17), 198 (9), 181 (11), 168 (4),
157 (23). Anal. Calcd for C17H18F3NO3: C, 59.82, H, 5.32, N, 4.10.
Found: C, 59.75, H, 5.26, N, 4.05.

2.1.3. (2S,3R)-Ethyl 2-(bromodifluoromethyl)-2-hydroxy-9-methyl-
2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate (5c).
N

CO2Et

CF2Br
OH



Scheme 6. The possible mechanism of formation of product 8.

N

N
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Colorless solid. Mp 138e140 �C. IR (KBr) n 3463, 2976,1745,1708,
1618,1473,1449,1442,1375,1342,1299,1283,1265,1188,1167,1131,
1102, 1060, 1018, 1000, 976, 908, 860, 815, 741 cm�1. 1H NMR
(300 MHz, CDCl3) d 7.44 (d, J¼8.1 Hz, 1H), 7.27 (d, J¼8.1 Hz, 1H), 7.19
(t, J¼8.4 Hz, 1H), 7.09 (t, J¼7.5 Hz, 1H), 4.90 (s, 1H), 4.38e3.63 (m,
2H, CH2), 3.63 (s, 3H, CH3), 3.23e3.03 (m, 5H), 1.35 (t, J¼7.2 Hz, 3H,
CH3) ppm. 19F NMR (282 MHz, CDCl3) d �58.5 (d, J¼18.0 Hz,
2F) ppm. 13C NMR (100 MHz, CDCl3): d 175.5, 137.5, 130.3, 127.3 (t,
1JCF¼313.9 Hz), 125.8, 121.4, 119.3, 108.9, 105.0, 104.9, 79.2 (q,
2JCF¼20.5 Hz), 62.0, 42.8, 30.7, 29.4, 23.8, 14.1 ppm. MS (EI) m/z (%):
403 (Mþ, 35), 401 (34), 383 (2), 356 (4), 328 (9), 304 (96), 276 (36),
230 (Mþ�Me�Ph�Br, 100), 210 (15), 198 (29), 182 (28), 157 (56).
Anal. Calcd for C17H18BrF2NO3: C, 50.76, H, 4.51, N, 3.48. Found: C,
50.76, H, 4.51, N, 3.38.

2.1.4. 1-((2S,3R)-2-Hydroxy-9-methyl-2-(1,1,1,2,2,3,3-heptafluoro)-
2,3,4,9-tetrahydro-1H-carbazole-3-yl)-2,2-dimethylpropan-1-one
(5d).
N

C3F7
OH

O

Colorless solid. Mp 175e177 �C. IR (KBr) n 3409, 2964, 1684,
1476, 1345, 1262, 1223, 1187, 1107, 1068, 1016, 813, 750, 723 cm�1.
1H NMR (300MHz, CDCl3) d 7.43 (d, J¼7.8 Hz,1H), 7.27 (d, J¼8.1 Hz,
1H), 7.19 (t, J¼8.4Hz,1H), 7.09 (t, J¼7.5Hz,1H), 5.77 (s,1H,OH), 3.62
(s, 3H, CH3), 3.19e2.88 (m, 5H), 1.27 (s, 9H) ppm. 19F NMR
(282MHz, CDCl3) d�80.8 (t, J¼9.9Hz, 3F),�116.4 to�116.8 (m, 2F),
�122.9 to �123.0 (m, 2F) ppm. 13C NMR (100 MHz, CDCl3) d 222.3,
137.5, 129.9, 125.6, 121.4, 119.3, 117.7, 108.9, 105.2, 58.5, 45.9, 41.0,
29.3, 27.0, 25.6, 18.5 ppm. MS (ESI): 454 (Mþþ1). Anal. Calcd for
C21H22F7NO2: C, 55.63, H, 4.89, N, 3.09. Found: C, 55.57, H, 4.90, N,
2.94.

2.1.5. Bis(1,2-dimethyl-1H-indol-3-yl)methane (6).
Colorless solid. 1H NMR (300MHz, CDCl3) d 7.42(d, J¼7.9 Hz, 2H),
7.22 (d, J¼7.8 Hz, 2H), 7.06 (t, J¼7.1 Hz, 2H), 6.96 (t, J¼7.0 Hz, 2H),
3.65 (s, 6H), 3.60 (s, 2H), 2.40 (s, 6H) ppm.

2.1.6. Ethyl 3-(1,2-dimethyl-1H-indol-3-yl)-4,4,4-trifluoro-3-hydroxo-
butanoate (7).

N

CO2Et
F3C

OH

Colorless solid. Mp 114e116 �C. 1H NMR (300 MHz, CDCl3)
d 7.69(d, J¼7.8 Hz, 1H), 7.25 (d, J¼7.8 Hz, 1H), 7.15 (t, J¼7.2 Hz, 1H),
7.07 (t, J¼6.9 Hz, 1H), 5.37 (s, 1H), 4.11e4.00 (m, 2H), 3.65 (s, 3H),
3.61 (d, J¼16.5 Hz, 1H), 3.25 (d, J¼16.5 Hz, 1H), 2.64 (s, 3H), 1.08 (t,
J¼7.2 Hz, 3H) ppm. 19F NMR (282 MHz, CDCl3) d �81.5 (s, 3F) ppm.
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Anal. Calcd for C16H18F3NO3: C, 58.35, H, 5.51, N, 4.25. Found: C,
58.44, H, 5.33, N, 4.29.

2.1.7. (4R,5R)-Ethyl 4-hydroxy-5-((1-methyl-1H-indol-3-yl)methyl)-
4-(trifluoromethyl)-1,3-dioxane-5-carboxylate (8).
N

O

O
OH

EtO2C
F3C
Colorless solid. Mp 117e119 �C. IR (KBr) n 3366, 2994, 2958, 2892,
1703, 1474, 1456, 1378, 1326, 1294, 1258, 1223, 1196, 1184, 1160, 1132,
1114, 1095, 1031, 1015, 970, 951, 746 cm�1. 1H NMR (300 MHz, CDCl3)
d7.85 (d, J¼7.8Hz,1H), 7.24 (t, J¼6.6Hz,2H), 7.15 (t, J¼6.9Hz,1H),6.99
(s, 1H), 5.38 (d, J¼5.4 Hz, 1H), 5.21 (s, 1H), 5.14 (d, J¼5.7 Hz, 1H),
4.34e4.12 (m, 3H), 3.97 (d, J¼11.7 Hz, 1H), 3.78 (s, 3H), 3.61 (dd,
J1¼15.0 Hz, J2¼6.0 Hz, 2H), 1.30 (t, 3H, J¼7.2 Hz) ppm. 19F NMR
(282 MHz, CDCl3) d �79.1 (s, 3F) ppm. 13C NMR (100 MHz, CDCl3)
d 172.1, 136.5, 129.4, 129.1, 122.2 (q, 1JCF¼286.6 Hz), 121.5, 119.7, 118.9,
108.9,108.1, 95.2 (q, 2JCF¼32.0Hz), 87.3, 66.8, 62.8, 62.2, 51.7, 32.7, 23.1,
13.8 ppm. MS (EI) m/z (%): 387 (Mþ, 2), 184 (6), 144 (C10H10Nþ, 100),
131 (4), 128 (4), 115 (5), 77 (8), 42 (5). Anal. Calcd for C18H20F3NO5: C,
55.81, H, 5.20, N, 3.62. Found: C, 55.79, H, 5.27, N, 3.64.
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